
redmineorg-copy202205 - Vote #63388

When downloading a file from the repository : don't fill the memory with bytes
2022/05/09 13:26 - Admin Redmine

ステータス: New 開始日: 2008/06/09

優先度: 通常 期日:

担当者: 進捗率: 0%

カテゴリ: SCM_3 予定工数: 0.00時間

対象バージョン: 作業時間: 0.00時間

Redmineorg_URL: https://www.redmine.org/issues/1410 status_id: 1

category_id: 3 tracker_id: 2

version_id: 0 plus1: 1

issue_org_id: 1410 affected_version:

author_id: 809 closed_on:

assigned_to_id: 1 affected_version_id:

comments: 16

説明

Current procedure for downloading a file from the repository implies dumping the bytes (all of them) into a string through method
"cat", then serving the content of the string. Although it works well for small files, some problems are raised when using large files :

dumping a file into the RAM is a bit risky, as it is quiet common now to have
files larger than the memory size. And we don't want servers to swap :)

it locks a ruby thread during the download time, which is a waste of ressources
Point 1) can probably be adressed using streams, but this won't fix point 2)
Point 1) and 2) can be fixed by dumping file content into a temporary file in the filesystem (RAILS_ROOT/tmp for example) and
asking the webserver (apache, or any other) to serve the content as a static file. That would free the ruby process for some other
work.

What do you think ?

journals

Here is a patch that tries to solve the problem of downloading a file larger than the memory size. I had to implement a buffered IO
with a is_binary_data? that encapsulate an IO instance reading the result of the cat command ("svn cat" for example). This buffered
IO uses 4Mo maximum of ram to read the beginning of the file and do the is_binary_data? test from String class. It can maybe be
reduced without influencing the test accuracy...

I tested the patch only with subversion adapter for the moment.

This code doesn't work as expected. I have to work a bit more on it...

Here is a patch that seems to work correctly. I included some unit tests.

I tried your patch on my machine, which has 512mb RAM and I need to transfer files of
400mb size. Unfortunately this does not work, the machine runs out of memory and does
not respond anymore. If I try smaller files (50mb) it works, but the memory is not freed by
redmine after the transfer completed. I think this is a serious problem and it is sad to see
that it was taken out of 0.8 as target.

I also tried the latest patch. It works much better than the current code with with files around 100MB.
But it doesn't handle a 700MB file (I've got 3GB of RAM):

NoMemoryError�(failed�to�allocate�memory):

2026/02/19 1/5

����/app/controllers/repositories_controller.rb:135:in�`write'
����/app/controllers/repositories_controller.rb:135:in�`entry'
����d:/dev/ruby/lib/ruby/gems/1.8/gems/actionpack-2.1.2/lib/action_controller/cgi_process.rb:212:in�`call'

What is strange is that I get the same error when trying to stream a file located on the disk using the standard send_file Rails
method in streaming mode: http://api.rubyonrails.org/classes/ActionController/Streaming.html#M000266.

Pierre, do you have this problem with similar files?

I only tested that all I give to the response is bufferized. It's the case, as when using the send_file method. The problem yet with
memory usage is caused by Mongrel or Webrick that uses a StringIO to buffer the response.

It seems that Rails+Mongrel is unable to stream a response ! The send_file problem is a known problem. Mongrel need as much
memory as the file size. The memory is freed by the garbage collector a long time after the response has been transmitted. This is
exactly the same problem with the patch I purposed.

An alternative could be x-send-file :
http://wiki.rubyonrails.org/rails/pages/HowtoSendFilesFast.

As a workaround, could you add the possibility to add links to files in the files component that can then be handled as arbitrary
http-requests by apache?

Issues 502 and 2205 requested having links to files as well.

+ 1

+1000

We've been running into this a lot at "Planio Redmine Hosting":http://plan.io/redmine-hosting recently.

Our approach to solving this (works perfectly in production with 20,000+ Redmines) is piping the output of the repository cat
operation into a tempfile and serving this using @send_file@.This works great by itself since it uses buffered streaming internally.

Our finding was that the real problem with Redmine's current implementation is loading the content into a single ruby variable, not
so much the locking of a ruby process during the time the file is streamed.

Here's a rundown as an example using git:

repositories_controller.rb:

def�entry

��#�...

��if�'raw'�==�params[:format]�¦¦
�������(@entry.size�&&�@entry.size�>�Setting.file_max_size_displayed.to_i.kilobyte)�¦¦
�������!�((@content�=�@repository.cat(@path,�@rev))�&&�is_entry_text_data?(@content,�@path))

����#�Force�the�download
����send_opt�=�{�:filename�=>�filename_for_content_disposition(@path.split('/').last)�}
����send_type�=�Redmine::MimeType.of(@path)
����send_opt[:type]�=�send_type.to_s�if�send_type

����#�if�we�have�the�@content�already�use�it�-�otherwise�use�a�tempfile
����if�@content
������send_data�@content,�send_opt
����else
������send_file�@repository.cat(@path,�@rev,�true),�send_opt
����end
��else
����#�...
��end
end

2026/02/19 2/5

http://api.rubyonrails.org/classes/ActionController/Streaming.html#M000266
http://wiki.rubyonrails.org/rails/pages/HowtoSendFilesFast
http://plan.io/redmine-hosting

repository.rb:

def�cat(path,�identifier=nil,�use_tempfile=nil)
��if�use_tempfile
����File.join(Dir.mktmpdir,�'repository.tempfile').tap�do�¦tempfile¦
������scm.cat(path,�identifier,�tempfile)
������Thread.new�do
��������sleep�1�;�File.unlink(tempfile)�;�Dir.unlink(File.dirname(tempfile))
������end
����end
��else
����scm.cat(path,�identifier,�nil)
��end
end

git_adapter.rb

def�cat(path,�identifier=nil,�tempfile=nil)
��#�...
��git_cmd(cmd_args,�:tempfile�=>�tempfile)�do�¦io¦
����io.binmode
����cat�=�io.read
��end
��cat
��#�...
end

abstract_adapter.rb

def�self.shellout(cmd,�options�=�{},�&block)
��#�...
��if�options[:tempfile].present?
����#�write�stdout�to�tempfile�if�given
����cmd�=�"#{cmd}�>�#{shell_quote(options[:tempfile])}"
��end
��#�...
end

As I said, this works great already. Two apparent downsides:

We're spawning a thread.
For deployment, you have to have a @/tmp@ dir that has enough space for large files in your repo.

You can take this a step further even, depending on what you're using as a frontend. With Nginx (Apache should work, too), we
were even able to free the Ruby process from streaming entirely. A simple @send_opt.merge(:x_sendfile => true)@ and a little tweak
in the nginx config allow us to use @X-Accel-Redirect@ for this and stream the tempfile without ruby having to read a single byte.

I have a patch against 1.4 that patches all repository types (but needs testing with repos other than git & svn) and I would be
willing to prep that for trunk, but before we start working on this I wanted to get a contributors opinion, so that we're sure the
patch won't end up unused.

Looking forward to your feedback.

Writing the file to disk before sending it is indeed the way to go IMO, but:

I don't get the thread thing: you're trying to delete the file after 1 sec, is that right? But we just can't know when sending will
be finished
Writing to disk small files seems to be less efficient, there should be some kind of threshold on the file size that triggers the
use of a temp file
If we're trying to adress the problem of big files, a better option would be to checkout the file only once and serve it multiple
times
No need to patch with @:x_sendfile => true@, you just need to set @config.action_dispatch.x_sendfile_header@ appropriately

I started working on this some time ago, I'll see what I have.

2026/02/19 3/5

Jean-Philippe Lang wrote:

Writing the file to disk before sending it is indeed the way to go IMO, but:

I don't get the thread thing: you're trying to delete the file after 1 sec, is that right? But we just can't know when sending
will be finished

Yes, it gets unlinked after 1 sec. Actually, you just need to be sure that streaming has started (not finished) before the file is
unlinked. If the file has been opened, the process has a handle and can finish streaming it even if it gets unlinked.

Writing to disk small files seems to be less efficient, there should be some kind of threshold on the file size that triggers
the use of a temp file

I'm doing this already. Check this out:

if�'raw'�==�params[:format]�¦¦
���(@entry.size�&&�@entry.size�>�Setting.file_max_size_displayed.to_i.kilobyte)�¦¦
���!�((@content�=�@repository.cat(@path,�@rev))�&&�is_entry_text_data?(@content,�@path))

If the file is small (i.e. @@entry.size > Setting.file_max_size_displayed.to_i.kilobyte@ evaluates to @false@), lazy evaluation will
execute @@content = @repository.cat(@path, @rev)@. Note, that the third argument (@use_tempfile@) is not set. Then, later on:

#�if�we�have�the�@content�already�use�it�-�otherwise�use�a�tempfile
if�@content
��send_data�@content,�send_opt
else
��send_file�@repository.cat(@path,�@rev,�true),�send_opt
end

If we have @@content@ already, we just use @send_data@. If @@content@ is @nil@ (because is wasn't set earlier), we use the
tempfile thing. Note that here the third argument is set to @true@.

If we're trying to adress the problem of big files, a better option would be to checkout the file only once and serve it
multiple times

True, but then you would need something like a cronjob to erase files according to some LRU algorithm.

No need to patch with @:x_sendfile => true@, you just need to set @config.action_dispatch.x_sendfile_header@
appropriately

You're right, I think for Redmine 2.x/Rails 3.x @:x_sendfile => true@ is not needed anymore...

I started working on this some time ago, I'll see what I have.

If that helps I can supply my raw patch against 1.4... Let me know.

Would it be useful to stream data?

Something like:

class�IOStreamer

��def�initialize(input)
����@in�=�input
��end

��def�each
����while�data�=�@in.read(4096)
������yield�data
����end
����@in.close

2026/02/19 4/5

��end
end

self.response_body�=�IOStreamer.new(scm_stdout)

Any plans to solve this issue?

related_issues

relates,New,29250,Problem with high RAM usage
duplicates,Closed,11275,Large file download

履歴
#1 - 2022/05/10 17:28 - Admin Redmine

- カテゴリ を SCM_3 にセット

Powered by TCPDF (www.tcpdf.org)

2026/02/19 5/5

http://www.tcpdf.org

