
redmineorg-copy202205 - Vote #69245

Generated test instances may share the same attribute value object
2022/05/09 15:22 - Admin Redmine

ステータス: Closed 開始日: 2011/02/12

優先度: 高め 期日:

担当者: 進捗率: 0%

カテゴリ: Code cleanup/refactoring_30 予定工数: 0.00時間

対象バージョン: 1.2.2_38 作業時間: 0.00時間

Redmineorg_URL: https://www.redmine.org/issues/7613 status_id: 5

category_id: 30 tracker_id: 1

version_id: 38 plus1: 0

issue_org_id: 7613 affected_version:

author_id: 6508 closed_on:

assigned_to_id: 0 affected_version_id:

comments: 17

説明

Actually, this test code will fail :

p1�=�Project.generate!
p2�=�Project.generate!

assert_not_equal�p1.identifier,�p2.identifier

That's because ObjectDaddy Project identifier generator actually returns the same object each time.

Thus, in source:trunk/test/exemplars/project_exemplar.rb :

��#�Project#next_identifier�is�defined�on�Redmine
��def�self.next_identifier_from_object_daddy
����@last_identifier�¦¦=�'project-0000'
����@last_identifier.succ!
����@last_identifier
��end

Should be :

��#�Project#next_identifier�is�defined�on�Redmine
��def�self.next_identifier_from_object_daddy(last_identifier)
����last_identifier�¦¦=�'project-0000'
����last_identifier.succ
��end

I'll post a patch soon.

journals

Here comes the patch.

All tests pass.

This issue was blocking me writting tests for #7456.

Sorry I don't really understand how your patched version works. Does ObjectDaddy pass the last_ as an argument implictly ?

But I see the problem in actual version. Why not a @@@last_identifier@ instead of @@last_identifier@ ? I think the problem is here
since it's a class method, an instance variable doesn't make much sense. And it should solve your first problem.

2024/04/24 1/3

What do you think ?

Jean-Baptiste Barth wrote:

But I see the problem in actual version. Why not a @@@last_identifier@ instead of @@last_identifier@ ? I think the problem is
here since it's a class method, an instance variable doesn't make much sense. And it should solve your first problem.

Nope, I've been a bit too much sybilline in my description :

The problem is that the generator returns the same object instance each time (@@last_name@), and that this instance is set by
ObjectDaddy as the attribute value of the newly spawned Project instance.

That is to say :

p1.identifier.object_id�==�p2.identifier.object_id�==�@last_name.object_id�

So, doing a @@last_name.succ!@ when generating p2 actually also change the p1.identifier value, which is not the desired effect.

If @@last_name.succ!@ was replaced by @@last_name = @last_name.succ@, the test would pass, but using a class variable would not
change anything.

Does ObjectDaddy pass the last_ as an argument implictly ?

Absolutly, it passes the previous value if generator method/block arity is 1 ; using this, IMHO, is the most elegant way to fix this
issue.

Okay, I'll have a deeper look at it, thanks for the infos.

I confirm the problem in current implementation but according to object_daddy documentation, there's a cleaner way to declare
generators. The following patch fixes the problem for project generators:

Index:�test/exemplars/project_exemplar.rb
===
---�test/exemplars/project_exemplar.rb��(revision�4892)
+++�test/exemplars/project_exemplar.rb��(working�copy)
@@�-1,22�+1,9�@@
�class�Project�<�ActiveRecord::Base
-��generator_for�:name,�:method�=>�:next_name
-��generator_for�:identifier,�:method�=>�:next_identifier_from_object_daddy
+��generator_for�:name,�:start�=>�'Project�0'
+��generator_for�:identifier,�:start�=>�'project-0000'
���generator_for�:enabled_modules,�:method�=>�:all_modules
���generator_for�:trackers,�:method�=>�:next_tracker
���
-��def�self.next_name
-����@last_name�¦¦=�'Project�0'
-����@last_name.succ!
-����@last_name
-��end
-
-��#�Project#next_identifier�is�defined�on�Redmine
-��def�self.next_identifier_from_object_daddy
-����@last_identifier�¦¦=�'project-0000'
-����@last_identifier.succ!
-����@last_identifier
-��end
-
���def�self.all_modules
�����[].tap�do�¦modules¦
�������Redmine::AccessControl.available_project_modules.each�do�¦name¦

2024/04/24 2/3

Yes, saw that too.

I was not at ease with so much change and I thought Eric was not ignorant of this way to do when he committed the exemplars in
the first place, and that he chose to write full generator methods on purpose.

But really, no idea why he didn't do that.

Also, there is possibility that the @Issue.generate_for_project!()@ method in
source:trunk/test/object_daddy_helpers.rb#L30 could have been written to supersede this
issue, as it is called many times in a row in @gantt_test.rb@ and that @generate!()@ already
deals with a block argument.

I don't think so. I think the problem hasn't been noticed before.

Anyway, I don't see any reason not to clean up these generators.

I do agree, the more clean, the better !

Still needs merging.

履歴
#1 - 2022/05/10 17:19 - Admin Redmine

- カテゴリ を Code cleanup/refactoring_30 にセット

- 対象バージョン を 1.2.2_38 にセット

Powered by TCPDF (www.tcpdf.org)

2024/04/24 3/3

http://www.tcpdf.org

