
redmineorg-copy202205 - Vote #79404

Add missing index to custom_values
2022/05/09 18:33 - Admin Redmine

ステータス: New 開始日: 2022/05/09

優先度: 通常 期日:  

担当者:  進捗率: 0%

カテゴリ: Performance_53 予定工数: 0.00時間

対象バージョン: Candidate for next major release_32 作業時間: 0.00時間

Redmineorg_URL: https://www.redmine.org/issues/29171 status_id: 1

category_id: 53 tracker_id: 3

version_id: 32 plus1: 0

issue_org_id: 29171 affected_version:  

author_id: 123866 closed_on:  

assigned_to_id: 0 affected_version_id:  

comments: 9   

説明

On our Redmine installation, we have around 100000+ issues with lots of custom fields.
I ran into a bottleneck were some Issue Queries where very very slow when requesting criteria on multiple custom fields and
grouping.

In the custom_values table, I noticed that there was no index for @[customized_type, customized_id, custom_field_id]@. Adding
such index resulted in loading times much faster for those complex issue queries (From 60+ seconds down to 5 seconds, with DB
caching disabled).

Here is the index I added:

class�AddMissingIndexCustomValues�<�ActiveRecord::Migration
��def�change
����add_index�:custom_values,�[:customized_type,�:customized_id,�:custom_field_id],�name:�"custom_values_customized_custom_fie
ld"
��end
end

journals

there're already two indexes

custom_values_customized����������������[customized_type,�customized_id]
index_custom_values_on_custom_field_id��[custom_field_id]

it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We don't need an
extra index and I'll still be effective.

60s to 5s seems to be a lot. My db has 140000 issues and 10000000 custom values (mysql 5.7) and I can confirm grouping
queries with custom fields are about 50% faster (without db caching). It's an improvement.

What is your db backend? Could you share query plans (explain) of the problematic query (with and without the index)?

https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html

Here is my DB Version: @mysql  Ver 15.1 Distrib 10.0.34-MariaDB, for debian-linux-gnu (x86_64) using readline 5.2@

Please find below an example of long SQL Query. The original query was much much bigger, but I have isolated a part which was
taking a lot of time. For instance, sort the list of issues by a Custom Field:

SELECT�issues.*�FROM�issues�
LEFT�OUTER�JOIN�custom_values�cf_34
��ON�cf_34.customized_type�=�'Issue'

2024/05/13 1/5

https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html


��AND�cf_34.customized_id�=�issues.id�
��AND�cf_34.custom_field_id�=�34
��AND�cf_34.value�<>�''�
ORDER��BY�Coalesce(cf_34.value,�'')�DESC�
LIMIT�25;

Here Custom Field id is 34, it is of type list in Redmine and its possible values are @['OK', 'KO', '']@ The DB contains: - 147262 
Issues - 3318197 Custom Values - 51211   Custom Values associated with Custom Field 34  *Running the query without the added
index Takes 13 seconds:*  

...
25�rows�in�set�(13.64�sec)

And the EXPLAIN:

***************************�1.�row�***************************
�����������id:�1
��select_type:�SIMPLE
��������table:�issues
���������type:�ALL
possible_keys:�NULL
����������key:�NULL
������key_len:�NULL
����������ref:�NULL
���������rows:�147262
��������Extra:�Using�temporary;�Using�filesort
***************************�2.�row�***************************
�����������id:�1
��select_type:�SIMPLE
��������table:�cf_34
���������type:�ref
possible_keys:�custom_values_customized,index_custom_values_on_custom_field_id
����������key:�custom_values_customized
������key_len:�96
����������ref:�const,redmine_development.issues.id
���������rows:�14
��������Extra:�Using�where

Now with the added index, it takes 2 seconds:

...
25�rows�in�set�(1.91�sec)

And the EXPLAIN:

***************************�1.�row�***************************
�����������id:�1
��select_type:�SIMPLE
��������table:�issues
���������type:�ALL
possible_keys:�NULL
����������key:�NULL
������key_len:�NULL
����������ref:�NULL
���������rows:�147262
��������Extra:�Using�temporary;�Using�filesort
***************************�2.�row�***************************
�����������id:�1
��select_type:�SIMPLE
��������table:�cf_34
���������type:�ref
possible_keys:�custom_values_customized,index_custom_values_on_custom_field_id,custom_values_customized_custom_field
����������key:�custom_values_customized_custom_field
������key_len:�100
����������ref:�const,redmine_development.issues.id,const
���������rows:�1
��������Extra:�Using�where

2024/05/13 2/5



Pavel Rosický wrote:

it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We don't
need an extra index and I'll still be effective.

I agree we could just replace the existing index with the new one, though I don't know if
this may slow down things somewhere else.

ok, the real problem is elsewhere

SELECT�issues.*�FROM�issues�
LEFT�OUTER�JOIN�custom_values�cf_34
��ON�cf_34.customized_type�=�'Issue'
��AND�cf_34.customized_id�=�issues.id�
��AND�cf_34.custom_field_id�=�34
��AND�cf_34.value�<>�''�
ORDER��BY�Coalesce(cf_34.value,�'')�DESC�
LIMIT�25;

id: 1
select_type: SIMPLE
table: issues
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 147262
Extra: Using temporary; Using filesort

it means that your db has to load 147262 issues to execute your query. The query is also ordered

ORDER��BY�Coalesce(cf_34.value,�'')�DESC

because it's ordered by a join statement it has to process
14 * 147262 rows
if you add an index the locality is better, then we have to process only
1 * 147262 rows

Maybe we can use inner join for IS/ALL filters (give it a try), but it would require major changes how redmine stores custom values
right now. There always has to be a custom value and it also won't work for NULL values. Let's discuss about it in a new ticket if
you're interested.

SELECT�issues.*�FROM�issues�
INNER�JOIN�custom_values�cf_34
��ON�cf_34.customized_type�=�'Issue'
��AND�cf_34.customized_id�=�issues.id�
��AND�cf_34.custom_field_id�=�34
��AND�cf_34.value�<>�''�
ORDER��BY�Coalesce(cf_34.value,�'')�DESC�
LIMIT�25;

Stephane Evr wrote:

Pavel Rosický wrote:

it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We
don't need an extra index and I'll still be effective.

I agree we could just replace the existing index with the new one, though I don't know if this may slow down things
somewhere else.
writes could be slower because [customized_type, customized_id, custom_field_id] is more complicated than
[customized_type, customized_id]

2024/05/13 3/5



it won't slowdown existing read queries because the order is the same as the previous index, for instance

SELECT�custom_values�WHERE�customized_type�=�'Issue'�AND�customized_id�=�1�can�use�[customized_type,�customized_id
,�custom_field_id]�index

but

SELECT�custom_values�WHERE�customized_id�=�1�AND�custom_field_id�=�1�can't�(not�a�real�case)

Pavel Rosický wrote:

because it's ordered by a join statement it has to process
14 * 147262 rows
if you add an index the locality is better, then we have to process only
1 * 147262 rows

Maybe we can use inner join for IS/ALL filters (give it a try), but it would require major changes how redmine stores custom
values right now. There always has to be a custom value and it also won't work for NULL values. Let's discuss about it in a
new ticket if you're interested.

Okay, thanks for your comments! One thing I am missing is why 14 rows? I tried with a completely different custom field and there
were 14 rows to process as well.

Anyway I will keep this index as it has really decreased the response time of Issue#index by a lot in complex projects. For sure
there is a small overhead but only as new issues are created (existing custom values will not be reindexed when their value
changes).

Stephane Evr wrote:

Okay, thanks for your comments! One thing I am missing is why 14 rows? I tried with a completely different custom field and
there were 14 rows to process as well.
It is showing how many rows it ran through to get result (it's just an estimate, not an exact number). It depends on many
factors, but if the number of rows is too high the query is probably too complex or indexes are missing.

Anyway I will keep this index as it has really decreased the response time of Issue#index by a lot in complex projects. For sure
there is a small overhead but only as new issues are created (existing custom values will not be reindexed when their value
changes).

I don't see any downsides about this change, so +1

Stephane Evr and Pavel Rosický, thank you for the detailed investigation.

My understanding is that the conclusion is that Redmine should have an index for
@[:customized_type, :customized_id, :custom_field_id]@ instead of @[customized_type,
customized_id]@. Is it correct?

Go MAEDA wrote:

Stephane Evr and Pavel Rosický, thank you for the detailed investigation.

My understanding is that the conclusion is that Redmine should have an index for @[:customized_type, :customized_id,
:custom_field_id]@ instead of @[customized_type, customized_id]@. Is it correct?

Yes

2024/05/13 4/5



履歴
#1 - 2022/05/10 17:04 - Admin Redmine

- カテゴリ を Performance_53 にセット

- 対象バージョン を Candidate for next major release_32 にセット

Powered by TCPDF (www.tcpdf.org)

2024/05/13 5/5

http://www.tcpdf.org

