redmineorg-copy202205 - Vote #79404

Add missing index to custom_values
2022/05/09 18:33 - Admin Redmine

googdod: New ggdog: 2022/05/09
goo: od goo:

ggdod: ggdog: 0%
gooad: Performance 53 agood: 0.000 O
goooooo: Candidate for next major release_32 gooo: o.ood O
Redmineorg_URL: https://www.redmine.org/issues/29171 |status_id: 1
category_id: 53 tracker_id: 3
version_id: 32 plusl: 0
issue_org_id: 29171 affected_version:

author _id: 123866 closed _on:

assigned_to_id: 0 affected_version_id:

comments: 9

ggd

On our Redmine installation, we have around 100000+ issues with lots of custom fields.
| ran into a bottleneck were some Issue Queries where very very slow when requesting criteria on multiple custom fields and

grouping.

In the custom_values table, | noticed that there was no index for @[customized_type, customized_id, custom_field_id]@. Adding
such index resulted in loading times much faster for those complex issue queries (From 60+ seconds down to 5 seconds, with DB
caching disabled).

Here is the index | added:

classO AddMissinglndexCustomValuesO <O ActiveRecord::Migration
O O defl change

0 0 0O O add_index :custom_values,O [:customized_type,[:customized_id,O :custom_field_id],00 name:O "custom_values_customized
Id"

O Oend
end

| custor

journals

there're already two indexes

custom_values_customizedd 0000000 0ODOODOODO O O [customized_type,[0 customized_id]
index_custom_values_on_custom_field_id O [custom_field_id]

it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We don't need an
extra index and I'll still be effective.

60s to 5s seems to be a lot. My db has 140000 issues and 10000000 custom values (mysgl 5.7) and | can confirm grouping
queries with custom fields are about 50% faster (without db caching). It's an improvement.

What is your db backend? Could you share query plans (explain) of the problematic query (with and without the index)?

https://dev.mysal.com/doc/refman/8.0/en/explain-extended.html

Here is my DB Version: @mysql Ver 15.1 Distrib 10.0.34-MariaDB, for debian-linux-gnu (x86_64) using readline 5.2@

Please find below an example of long SQL Query. The original query was much much bigger, but | have isolated a part which was
taking a lot of time. For instance, sort the list of issues by a Custom Field:

SELECTO issues.*0 FROMO issues[]
LEFTO OUTERO JOINO custom_values(cf_34
0 O ONO cf_34.customized_typel =[1 'Issue’

2024/05/13 1/5

https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html

0O O ANDO cf_34.customized_id =0 issues.id

O O ANDO cf_34.custom_field_idd =0 34

0O O ANDO cf_34.valued <>0 "0

ORDERO O BYO Coalesce(cf_34.value,[0 ") DESCO
LIMITO 25;

Here Custom Field id is 34, it is of type list in Redmine and its possible values are @['OK', 'KO', "]@ The DB contains: - 147262
Issues - 3318197 Custom Values - 51211 Custom Values associated with Custom Field 34 *Running the query without the added
index Takes 13 seconds:*

250 rows[inO set (13.640 sec)

And the EXPLAIN:

2 0 1.0 rowO * T
O0000oooooooidol

O O select_type:0J SIMPLE

00000000 table:d issues

000000000 type:d ALL

possible_keys:(1 NULL

0000000000 key:0 NULL

00000 0Kkey_len:d0 NULL

0000000000 ref:0dNULL

000000000 rows:d 147262

00000000 Extra:00 Usingd temporary; UsingO filesort

& Fxkkkkrk] 2.0 rowd * .
OO0000o0o0oOoooOgiddl

O O select_type:O0 SIMPLE

00000000 table:Dcf_34

000000000 type:O ref

possible_keys:[J custom_values_customized,index_custom_values_on_custom_field_id
000000000 Odkey:O custom_values_customized
00000 dkey_len:0 96

000000000 dref.d constredmine_development.issues.id
000000000 rowsOd14

00000000 Extra:00 Usingd where

Now with the added index, it takes 2 seconds:

250 rows0 in0 set0 (1.910 sec)

And the EXPLAIN:

& & 2 a *0 1.0 rowd ** a a 2 *
O000oooooooidol
O O select_type:[0 SIMPLE
00000000 table:d issues
000000000 type:d ALL
possible_keys:[1 NULL
000000000 Dkey:ONULL
0000D0Okey_len:00 NULL
0000000000 ref:dNULL
000000000 rows:d 147262
0000000 0 Extra:0 Usingd temporary;d UsingOd filesort
FxFkkk Rk kxR kkkkkkkk [2.0 row [FrEEkkkkokkkkokkok kokokokokook
O000ooooooooidol
O O select_type:00 SIMPLE
00000000 table:dcf_34
000000000 typed ref
possible_keys:[J custom_values_customized,index_custom_values_on_custom_field_id,custom_values_customized_custom_field
000000000 O key:O custom_values_customized_custom_field
000000Kkey_len:0 100
0000000000 ref:0 constredmine_development.issues.id,const
000000000 rows:d1
0000000 OdExtra:d Usingd where

2024/05/13 2/5

Pavel Rosicky wrote:

it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We don't
need an extra index and I'll still be effective.

| agree we could just replace the existing index with the new one, though | don't know if
this may slow down things somewhere else.

ok, the real problem is elsewhere

SELECTO issues.*d0 FROMO issues

LEFTO OUTERO JOINO custom_values(cf_34

0O O ONO cf_34.customized_type[=[1 'Issue’

0O O ANDO cf_34.customized_id =0 issues.id

O O ANDO cf_34.custom_field_id0 =00 34

0O O ANDO cf_34.valued <>0 "0

ORDERO [0 BYO Coalesce(cf_34.value,[] ") DESCO
LIMITO 25;

id: 1

select_type: SIMPLE

table: issues

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 147262

Extra: Using temporary; Using filesort

it means that your db has to load 147262 issues to execute your query. The query is also ordered
ORDERO 00 BYO Coalesce(cf_34.value,[1)OO DESC

because it's ordered by a join statement it has to process

14 * 147262 rows

if you add an index the locality is better, then we have to process only
1*147262 rows

Maybe we can use inner join for IS/ALL filters (give it a try), but it would require major changes how redmine stores custom values
right now. There always has to be a custom value and it also won't work for NULL values. Let's discuss about it in a new ticket if
you're interested.

SELECTO issues.*0 FROMO issues[]

INNERDO JOINDO custom_valuesl cf_34

O O ONO cf_34.customized_type[=[1 ‘Issue’

O O ANDO cf_34.customized_id0 =00 issues.idO

O O ANDO cf_34.custom_field_id0 =0 34

O O ANDO cf_34.valuell <>0 "0

ORDERO [0 BYO Coalesce(cf_34.value,[])OO DESCO
LIMITO 25;

Stephane Evr wrote:
Pavel Rosicky wrote:
it would be better to replace custom_values_customized with [customized_type, customized_id, custom_field_id]. We

don't need an extra index and I'll still be effective.

| agree we could just replace the existing index with the new one, though | don't know if this may slow down things
somewhere else.

writes could be slower because [customized_type, customized_id, custom_field_id] is more complicated than
[customized_type, customized_id]

2024/05/13 3/5

it won't slowdown existing read queries because the order is the same as the previous index, for instance

SELECTO custom_values[] WHERED customized_typel =00 'Issue'l] ANDO customized_id0J =00 10 can usel] [customized_type,
,0 custom_field_id]O index

but

SELECTO custom_valuesd WHERED customized_idd =00 100 ANDO custom_field_id0 =0 10 can'td (not0O all real case)

Pavel Rosicky wrote:

because it's ordered by a join statement it has to process

14 * 147262 rows

if you add an index the locality is better, then we have to process only
1* 147262 rows

Maybe we can use inner join for IS/ALL filters (give it a try), but it would require major changes how redmine stores custom
values right now. There always has to be a custom value and it also won't work for NULL values. Let's discuss about it in a
new ticket if you're interested.

Okay, thanks for your comments! One thing | am missing is why 14 rows? | tried with a completely different custom field and there
were 14 rows to process as well.

Anyway | will keep this index as it has really decreased the response time of Issue#index by a lot in complex projects. For sure
there is a small overhead but only as new issues are created (existing custom values will not be reindexed when their value
changes).

Stephane Evr wrote:
Okay, thanks for your comments! One thing | am missing is why 14 rows? | tried with a completely different custom field and
there were 14 rows to process as well.
It is showing how many rows it ran through to get result (it's just an estimate, not an exact number). It depends on many
factors, but if the number of rows is too high the query is probably too complex or indexes are missing.
Anyway | will keep this index as it has really decreased the response time of Issue#index by a lot in complex projects. For sure

there is a small overhead but only as new issues are created (existing custom values will not be reindexed when their value
changes).

| don't see any downsides about this change, so +1

Stephane Evr and Pavel Rosicky, thank you for the detailed investigation.

My understanding is that the conclusion is that Redmine should have an index for
@[:customized_type, :customized_id, :custom_field id]@ instead of @[customized_type,
customized_id]@. Is it correct?

Go MAEDA wrote:
Stephane Evr and Pavel Rosicky, thank you for the detailed investigation.

My understanding is that the conclusion is that Redmine should have an index for @[.customized_type, :customized_id,
.custom_field_id]@ instead of @[customized_type, customized_id]@. Is it correct?

Yes

11 custo

2024/05/13 4/5

oo

#1 - 2022/05/10 17:04 - Admin Redmine
-0000 O Performance 530000
-0000000 O Candidate for next major release_ 32 00 00O

2024/05/13 5/5

http://www.tcpdf.org

